

What do you think of when you hear the word "Logic?"

- Logic is the science of evaluating arguments
- What comes to mind when you think of an "argument"?
- In this class it is a set (group) of statements, one of which is supposed to be supported by the others
- Another way to think about it is to understand that arguments are often used when someone or some group of people is attempting to convince you to believe something.
- Where do you encounter arguments in your life?
- This course is designed to help you to identify which arguments you should accept and which arguments you should reject.
- Law, computer programming, detective work, logic puzzles, standardized tests (SAT, GRE, MCAT, etc.)

What is a statement?

- A claim that is either true or false
- Can anyone give me an example of a statement?
- What types of sentences are not statements?
- Questions
- Commands
- Exclamations
- Proposals
- Suggestions

Examples

- All marmots are mammals. Fido is a marmot, so he must be a mammal.
- Are you going to San Francisco next summer? San Francisco is a larger city than Seattle, but in the summer even more people come to the city. It's about 900 miles from here.
- How many statements?
- Do some statements support others?

Premises \& Conclusions

- Premises are the statements that support the others
- The conclusion is the claim being supported by the others
- Conclusion \& Premise Indicators (p. 3)
- Indicators are not part of premise or conclusion

Premises \& Conclusions

- Premises are the statements that support the others
- The conclusion is the claim being supported by the others
- Conclusion \& Premise Indicators (p. 3)
- Indicators are not part of premise or conclusion

More Examples

- Bob was late today. Thus, because anyone who is late today will be fired, Bob will be fired.
- Mary works on the high seas, since she's a sailor and all sailors work on the high seas.
- George W. Bush should not have been President. He would not condemn torture. He was not skilled enough to lead the country.

Exercises from the text

- 2, 3, 11
- "Therefore" trick
- Note that conclusion can come at the beginning, middle, or end
- There can be any number of premises
- Work on starred problems from 1.1 at home, check your answers
- Look at exercises II, III and IV

There are 3 ways to distinguish between arguments and non-arguments:
Look for an inferential relationship between some of the statements and one of the statements in a passage. Look for the presence of premise or conclusion indicators (note that this does not guarantee that it's an argument)
Try to identify the passage as one which is clearly recognized as nonargumentative

[^0]
More typical kinds of nonarguments

- Loosely Associated Statements
- EvCC is the least expensive community college in WA. It has approximately 7,000 different students who attend. It is located 30 miles north of Seattle.
- Reports (even of arguments)
- The president of the college argued that in order to meet the needs of students in Snohomish county, the size of the Philosophy department would have to be doubled.

More typical kinds of nonarguments

- Conditional Statements (A single conditiona statement is not an argument)
- If Rick Larsen is defeated in the next election then our congressional district will be represented by a republican.
- Antecedent \& Consequent
- If Rick Larsen is defeated in the next election, our congressional district will be represented by a republican.
- Our congressional district will be represented by a republican, if Rick Larsen is defeated in the next election.

Explanations

Mt. St. Helens erupted because of building geological pressures deep underneath the Earth.
Mt. St. Helens erupted because of harmonic disalignment.
Good vs. Bad explanations
They use indicator words, but aren' t arguments
There are arguments about explanations and explanations of arguments

Typical Kinds of Deductive Arguments

- Arguments from Mathematics (but not statistics)
Al Gore got $3,000,000$ votes in Florida in the 2000 election. George W. Bush got $3,000,001$ votes in Florida in the 2000 election, therefore Bush got more votes than Gore in Florida in the 2000 election.
Statistical arguments are often inductive:
- 90% of all people are right-handed, therefore I' d bet that John Kerry is right-handed.

Typical Kinds of Deductive Arguments

- Arguments from Definition
- This condiment must be chowchow, as you can see, it's a relish of mixed pickles in mustard.

Typical Kinds of Deductive Arguments

- Syllogisms: Two premises and one conclusion
- Categorical Syllogism
- Each claim begins with "all," "no," or "some"
- Hypothetical Syllogism
- At least one premise is a conditional statement
- Disjunctive Syllogism
- One of the premises is a disjunction (either/ or)
Which kind of syllogism is it?
The technology fee will go up anyway, if
the students reject the tech fee proposal.
The students rejected the tech fee
proposal. Hence, the technology fee will
go up anyway.
All computers on this campus are
outdated. Thus, all computers on this
campus are useless, since all outdated
computers are useless.
I can purchase a Macintosh or a Dell. I
won' t purchase a Dell, hence I will
purchase a Macintosh.

Typical Kinds of Inductive Arguments

- Predictions (these are about the future)
- The Mariners won yesterday and the day before that against the Athletics, so they should beat the A's again today.

Typical Kinds of Inductive Arguments

- Argument from analogy
- These occur when two (or more) things are compared and people conclude that because item (1) has characteristics X, Y, and Z and item (2) also has characteristics X and Y, therefore the second one must have Z as well.

An argument from analogy

- I loved Douglas Coupland's collection of short stories Life After God, so his new collection of short stories Polaroids from the Dead should be great as well.
- I loved (Z) Douglas Coupland's (Y) collection of short stories (X) Life After God (item 1), so his (Y) new collection of short stories (X) Polaroids from the Dead (item 2) should be great as well. (l.e., it should have Z as well.)

Typical Kinds of Inductive

 Arguments- Inductive Generalizations
- Coming to a conclusion about all the members of a group based on a small sample of that group
- George W. Bush and Dick Cheney have accepted donations from Enron in the past. Thus, it is clear that all Republicans have accepted donations from Enron in the past.
These can be difficult to distinguish from arguments from analogy. Keep in mind:
- Analogies conclude about a limited number of things
- Generalizations conclude about all of a certain group

Typical Kinds of Inductive

 Arguments- Arguments from Authority
- Coming to a conclusion based on information from an expert or other authority
- Political commentator David Brooks says that Senator Maria Cantwell has met with leaders of the Palestine Liberation Organization. Thus Cantwell has met with leaders of the P.L.O.

Typical Kinds of Inductive Arguments

- Arguments based on signs
- Similar to arguments from authority, but a sign replaces the person as the source of knowledge
[Imagine being in a natural history museum.]
That placard there says that this piece of rock came from the moon! Wow, pretty amazing to be looking at a piece of the moon, eh?
It probably is a piece of the moon, but it could also be time to trick the Canadian! So, with no guaranteed conclusion, it's inductive.

Typical Kinds of Inductive Arguments

- Causal Arguments [Not casual arguments.]
- Arguments that conclude that one thing caused something else based on evidence
- [Imagine you have natural gas service to your home and when you go home today...] My home smells like rotten eggs, and I have a gas stove, so I must have a natural gas leak.
- Causal Arguments are about specific instances

One kind of argument that

 can be either Deductive or Inductive- Arguments from Science
- Arguments that deal with newly developing science are inductive.
- Arguments that deal with well established science are deductive
- Another way to think of it is that deductive scientific arguments deal with applications of known scientific laws.

Scientific arguments:

Deductive or Inductive?

- [Imagine being in a lab under normal conditions.] Water boils at $100^{\circ} \mathrm{C}$, therefore when this water gets to $100^{\circ} \mathrm{C}$ it will boil. (Deductive)
- [Imagine being in a lab testing a newly discovered substance X, fresh from Mars.] I' ve been able to boil newly discovered substance X at $75^{\circ} \mathrm{C}$ twice. Thus, when I bring substance X to 75°
C , it will boil. (Inductive)

Deductive arguments: Valid or Invalid?

- Ask this question first when evaluating deductive arguments:
- If I assume (pretend) that the premise(s) are all true, does the conclusion necessarily have to follow (i.e. is it guaranteed), as the author suggests it does?
Yes = Valid
No = Invalid
Let' s go back to the previous arguments

Next: Deductive Arguments:

 Sound or Unsound?- If the argument has already been determined to be invalid, it's automatically unsound
- If it's already been determined to be valid, it may be either sound or unsound.
- It will be sound if it' s valid and all its premises are true, and it will be unsound if one or more premises is false.
Three Important Points about
Validity
- Valid \neq True!!!
Only statements, not arguments are true or
false.
- True premises and a false conclusion always
indicates that you have an invalid argument.
- The Mariners have never been in the World
Series and the Mariners have won the highest
number of games in a regular season for a
team, thus the Mariners are based in Seattle.
- All true statements, but certainly an invalid
argument.

	Inductive Arguments: Strong or Weak? - Ask this question first when evaluating inductive arguments: - Do the premises, if accepted as true, make the conclusion likely to be true, as the author suggests? - Yes = Strong - No = Weak - It' s a matter of degree, unlike validity

Going to the Casino

- Let's first of all throw the die
- Now, imagine you' re playing Blackjack (21)
- I' ve got a pair of tens! Therefore l' ll probably win if I take one more card.
- I've got a pair of tens! Therefore I'll probably win if I just stay put.
- [You get discouraged and move to roulette]
- Black has come up the last 5 spins! Thus, it' ll probably be red on the next one.

How to win money at a party*

- Since there are at least 23 people here in class today, it is likely that two of us have the same birthday.
- See Innumeracy pgs. 26-27 to see the math
- Because there are 535 members of the U.S. Congress, it is likely that two of them were born on the exact same day.
- Because there are 535 members of the U.S. Congress, it is likely that two of them share the same birthday.

Two more things to

 remember:- Strong/Weak and Cogent/Uncogent have nothing to do with whether the conclusion actually turns out to be true or false
- Keep the terms straight, see the chart at the end of 1.4.
- Baker, Rainier and Adams are all volcanoes, so it seems clear that all the mountains in the Cascades are volcanoes.

Standard Form Categorical Propositions

- All categorical propositions relate two classes (types) of things
- There are four of these
- All S are P.
- No S are P.
- Some S are P .
- Some S are not P .
- "S" and "P" are placeholders for the two types of things

There is no "All S are not P "!

- Why? Because it's ambiguous.
- All horses are not animals native to Europe.
- No horses are animals native to Europe?
- Some horses are not animals native to Europe?
- I guarantee you will be tempted to write "All...are not..." at some point-don' t do it!

Components of Standard

Form Categorical
Propositions

- Quantifier
- "All," "No," "Some"
- Subject Term
- Between quantifier and "are"
- Copula
. "are" or "are not"
- Predicate Term
- Everything after the copula

What "All," "No," and "Some" mean

- "All S are P." means "if there are any S's at all, then they will be P's" (but it doesn' t say that S' s actually exist).
"No S are P." means "there are no S's at all that are P's"
"Some S are/are not P." means "there is at least one S that is/is not a P " (it says that at least one S exists)

Letter Names of the

 Propositions- All S are $P=$ "A" statement
- No S are $P=$ "E" statement
- Some S are $\mathrm{P}=$ " 1 " statement
- Some S are not $P=$ " O " statement

Argument Forms

All Collies are dogs. All dogs are mammals, thus all Collies are mammals.
If the bus is running, I can get to work. So, I can get to work, because the bus is running. All C are D. All D are M, thus all C are M. If B, then W. So, W, because B.
Arguments are valid or invalid because of their form

How to extract the argument's form

- For categorical syllogisms:
- Replace the subject term and the predicate term with a single letter each.
- For other kinds of arguments:
- Leave: "if," "then," "either," "or,"
"neither," "nor," "and," "only," and indicator words
- Other words become single letters (note that in hypothetical syllogisms, single letters stand for entire propositions)

Going back to our examples

- All C are D. All C are M. Thus, all D are M.
- $D=$ mammals $\quad M=$ four legged creatures $\mathrm{C}=$ cats
- If T, then C. C, so T.
- T= Elvis Presley was beheaded
- C= Elvis Presley is dead

More practice

- All plankton are photovoltaic creatures. Some photovoltaic creatures are reptiles. Thus, no plankton are reptiles.
- All P are V. Some V are R. Thus, no P are R.
- $P=$ cats $\quad R=$ mammals $\quad V=$ felines
- For categorical syllogisms stick with simple substitutions, so it is obvious that your new sentences are true or false.
- For hypothetical syllogisms, stick with dead celebrities.

The Square of Opposition

"contradictory" means "must have opposite truth values"

What about I and O

statements?

- Some cats are mammals.
- Some cats are not mammals.
- The first is true, the second is false.
- BUT:
- Some cats are tabbies.
- Some cats are not tabbies.
- The first and second are both true.

Immediate Inferences (Args. with one premise

- It is false that all cows are punctilious creatures, thus it is false that some cows are not punctilious creatures. (Invalid)
- Can' t use the square on the next one!
- All orcas are sea creatures. Thus, it is false that all sea creatures are orcas. (Invalid, based on Venn)

Conversion, Obversion, and Contraposition

- Some unregistered people are not people ineligible for financial aid. Huh?
- Some people eligible for financial aid are not registered people.
We will learn ways to turn sentences like this into ones that make sense.
But, often we'll be turning good sentences into stylistically bad ones.

Term Complements

- The term complement is everything something is not (given the context)
- Chairs?
- Cars?
- Inefficient people?
- Gaseous things?
- People who are not teachers

Obversion

- Change the quality (but not the quantity) and replace the predicate with its term complement
- All hot dogs are cholesterol containing foods.
No hot dogs are cholesterol free foods.
A, E, I, O are all logically equivalent when obverted

The Ultimate Challenge

- All lizards are reptiles.
- Contrapose this
- All non-reptiles are non-lizards.
- You can obvert any categorical proposition to make it easier to diagram.
- No non-reptiles are lizards.

Why worry about it?

- Most categorical propositions do not occur in standard form, so we have to translate them in order to work with them in the way we have been in previous sections.
- There are ten main ways in which a categorical proposition may differ from standard form, and we' 11 look at additional examples of each (Hurley has many other good examples.)

Watch out for these words

Any time you see one of the following words in the middle of a sentence, before translating put the word and anything that follows it at the beginning of the sentence and then translate:
When, where, what, whenever, wherever, whatever, if, only, the only, and unless
Also "Rule for A propositions" lists on pg 183

Unexpressed Quantifiers

- A good first step in translation is to ask yourself which quantifier you want to use
- Sport utility vehicles are expensive.
- All suv's are expensive items.
- Suv's are sold by this auto dealer.
- Some suv's are vehicles sold by this auto dealer.

Exceptive Propositions: All

 except S are $P \&$ All but S are P- All cats except tigers are friendly animals.
- No tigers are friendly animals and all cats that are nontigers are friendly animals.
- Now you try one:
- All employees but teachers can receive bonuses.
- No teachers are employees who can receive bonuses and all employees other than teachers are employees who can receive bonuses.

How to translate

- First look for one of the key words in the tan box at the end of the section - Make sure the required words are at the beginning of the sentence before translating.
- If there are no key words in the sentence, ask yourself which quantifier should be used to translate the sentence while preserving the meaning.

Translation Checklist

- Make sure that you have one of our three quantifiers beginning your sentence.
- Make sure that you have one of the two copulas in the sentence.
- Make sure that you could convert the sentence and have it still make sense. (noun in predicate)
- Make sure that you have eliminated all key words in the tan box at the end of this section.
Don' t use "identical to" when not needed.
Make sure that your new sentence means the same thing as the old one!
Watch out for "All. ..are not!"

Five new friends

```
- " " Tilde (used for "not")
\bullet "`" Dot (used for "and")
- "v" Wedge (used for "or")
- "Ј" Horseshoe (used for "if...then")
- \equiv Triple Bar (used for "if and only
    if")
    - "`" Just Kidding
```


Tilde (Negations)

- Hot dogs aren't healthy foods.
- H
- What does " H " stand for?
- It is not the case that bananas are vegetables.
- ~B
- What does "B" stand for?

Dot (Conjunctions)

- Salami is tasty and apples are fruity.
- S.A
- It is false that Salami is tasty but sausage is tasty.
- ~S •G
- Both John and Bob are not employed.
- ~J•~B
- Compare with ~(J•B)

Horseshoe (Conditionals)

- If today is Tuesday, then my assignment is due.
- T $\supset \mathbf{D}$
- My assignment is due, if today is Tuesday.
- This assignment is late only if the instructor changed the due date.
- L $\supset \mathbf{C}$
- See the complete list at the end of 5.1

The Triple Bar
 (Biconditionals)

- Tom is a bachelor if and only if he is unmarried and over 18.
- $\mathrm{T} \equiv(\sim \mathrm{M} \cdot \mathrm{O})$
- Tom's being a bachelor is a sufficient and necessary condition for taking this poll.
- $\mathrm{T} \equiv \mathrm{P}$
- What do we do with parentheses?

Well formed formulas

- The same thing can happen with statements in propositional logic.
- Look at 5.1 Exercise Set III
- Which ones are well-formed formulas (wffs)?

Can you find the main operator?

- In math, I think we can fairly easily determine the main operator of a mathematical equation
- What would you say is the main operator of: $2 \cdot(5+3)$? (It's the last operator you' d work on if you were working on the problem.)
- It's the same with propositional logic.
- $A \supset(\sim B \equiv C)$
- ~[A v (C $\supset \mathrm{G})]$
- You can only have one main operator
- See 5.2 Exercise Set I

The Truth Tables (see front cover of text)

\sim	p	p	\cdot	q	p	v	q	p	J	q		p	\equiv	q
F	T	T	T	T	T	T	T	T	T	T		T	T	T
T	F	T	F	F	T	T	F	T	F	F	T	F	F	
		F	F	T	F	T	T	F	T	T	F	F	T	
	F	F	F	F	F	F	F	T	F	F	T	F		

Definitions for multiple statements

- What you do is compare the main operator columns to determine if two or more statements are:

1. Logically equivalent (same exact values)
2. Contradictory (opposite truth values)
3. Consistent (both are true in at least one row)
4. Inconsistent (none of the above)

More practice

Now try a truth table for three statements:
$\sim(A \vee B)$
$\mathrm{A} \supset \sim \mathrm{A}$
C

Using Truth Tables to Make

 Sense of the World- Word problems
- Try 5.3 Exercise set II: 3

Exercises

Translate and determine $\mathbf{T} / \boldsymbol{F}$

- McCain won the Presidency or he is not a Republican. (M, R)
- Washington was assassinated if France didn' t bomb Pearl Harbor. (W, F)
- Obama won the Presidency and Biden won the Vice-Presidency. (O, B)

Be sure to circle main operator value!

Now you try a couple

- Premise 1: ~D v C
- Premise 2: ~C v E
- Conclusion: $\mathrm{C} \equiv \mathrm{D}$
- Premise 1: $A \supset \sim B$
- Premise 2: ~B•A
- Conclusion: ~A v (B •A)
- Review Exercise set IV from 6.2

How about this one?

- Premise 1: $[(\mathrm{B} \supset \mathrm{A}) \bullet \mathrm{E}] \equiv \mathrm{F}$
- Premise 2: A•~G
- Conclusion: F v H
- Ouch!
- 6 Different letters = how many rows?
- A lot!
- (64 to be more precise)

Using Indirect Truth Tables

 to test for consistency- The only difference here is that we are trying to see if all of the claims can be true at the same time
- So, you start by making a claim true (hopefully a claim that can only be made true in one way)
- Continue until you can make all the claims true at the same time, or you get a contradiction

The Rules of Inference

Modus Ponens (MP)

- If the Mariners have won today's game then they' re in the World Series. The Mariners have won today's game, thus they' re in the World Series.
Modus Tollens (MT)
- If the Mariners have won today's game then they' re in the World Series. The Mariners are not in the World Series, thus they didn' t win today's game.

Some comments about the rules of inference

Simplification and Conjunction

- Simp
- Obama is President and Biden is Vice President. Thus, Obama is President.
- Conj
- Obama is President. Biden is Vice

President. Thus, Obama is
President and Biden is Vice President.

Try a problem using only the 18 rules

- X $\supset \mathrm{Y} / / \mathrm{X} \supset(\mathrm{X} \bullet \mathrm{Y})$

Can't do it, can you? But it's clearly valid!
So we' ll use conditional proof to derive the conclusion

- You can use conditional proof to get a conditional statement whenever you need one.
- Assume the antecedent of the conditional statement you' re trying to get, then focus only on getting the consequent of the conditional you' re trying to get.

Which are contradictions?

$(A \cdot B) \cdot \sim(A \cdot B)$
$(A \vee B) \cdot(\sim A \vee B)$
$A \cdot \sim \sim A$
~A•A
$A \cdot \sim B$
$\sim \sim \sim A \cdot A$

Predicate Logic

- It's a combination of categorical and propositional logic
- Predicates are uppercase letters AZ and stand for types of things
- Individual Constants are lowercase letters a-w (NOT x, y, or z) and stand for unique persons, places, things, or times
- Variables are lowercase x, y, and z and range over individual things

Universal Statements

- Universal statements (A, E statements)
- We need the Universal Quantifier to express these: (x) or (y) or (z)
- It means "for all x" or "for any x"
- It is used 99% of the time with a \supset
- So, translate "All rabbits are mammals."
- (x$)(\mathrm{Rx} \supset \mathrm{Mx})$
- How about "No rabbits are fish?"
- (x$)(\mathrm{Rx} \supset \sim \mathrm{Fx})$

Particular Statements

- Particular statements (I, O)
- We need the Existential Quantifier to express these: $(\exists x)$ or $(\exists y)$ or $(\exists z)$
- It means "There exists an x such that..."
- It is used 98% of the time with a -
- Translate "Some Senators are Republican."
- ($\exists \mathrm{x})(\mathrm{Sx} \cdot \mathrm{Rx})$
- Now try "Some Senators are not Republican."
- ($\exists \mathrm{x})(\mathrm{Sx} \cdot \sim \mathrm{Rx})$

What's wrong with these?

- (x$)(\mathrm{Rx} \cdot \mathrm{Mx})$
- Universal quantifier shouldn' t go with a dot
- $(\exists x)(R x \supset M x)$
- Existential quantifier shouldn' t go with a horseshoe

Translation Checklist

1. Check for any individual constants. (If you have them, you may not need a quantifier.)
2. Determine which quantifier to use.
3. If you' re using (x), use a " \supset ", for $(\exists x)$ use a " \cdot ", if anything.
4. Make sure there are no free variables in your translation.
5. Check to see that the translation has the same meaning as the original sentence.

Try these:

- Fish are mammals. (F, M)
(x)(Fx $\supset \mathrm{Mx})$
- Some fish are endangered species. (F, E, S)
$(\exists x)[F x \bullet(E x \cdot S x)]$
Poisonous fish is not served at this restaurant. (P,F,S)
(x)[(Px •Fx) $\supset \sim S x]$

A fugu is a poisonous fish. ($\mathrm{F}, \mathrm{P}, \mathrm{I}$)
(x)[Fx $\supset(P x \cdot \mid x)]$

Check the translation hints

- See the translation hints in 3.6 \& 5.1
- Try "Politicians and lawyers are interested in the election." (P, L, I)
- (x$)[(\mathrm{Px} \vee \mathrm{Lx}) \supset \mathrm{Ix}]$

Don' t use a dot on this one, because then you have to be a politician and a lawyer at the same time to be interested in the election.

Universal Instantiation

UI: Basically there are no restrictions on using this rule
(x)Fx \rightarrow Fy or Fa
" $(x) F x$ " is any statement in predicate logic with a universal quantifier as its main operator
" y " can be any variable, even " x "
"a" can be any individual constant
When the universal quantifier is the main operator, you can use this rule to pull it off and change the variable to any letter a-z

Which uses of the rules work?

1.	$(x)(F x \supset G x)$	1.	$(x)(F x \supset G x)$
2.	Fy $\supset G x$ UI 1	2.	Fx $\supset G x$ UI 1

The QN Rules

- Martians do exist.
$(\exists x) M x:: \sim(x) \sim M x$
- It's not the case that you can take anything and it won't be a
Martian.
Martians don't exist. $\sim(\exists \mathbf{x}) \mathbf{M x}::(\mathbf{x}) \sim \mathbf{M x}$ Take any x , it won' t be a Martian.

One new restriction on $\boldsymbol{U G}$

- Look at this problem:
- 1. ($\exists \mathrm{x}) \mathrm{Ax} /$ (x) Ax
- We can derive it using IP, but it's clearly invalid! (assume $\sim A x$)
- To avoid this, we must not use UG on a free variable in our assumption while indented.

The Counterexample Method

- Review your notes from 1.5
- Remember that if we can show that an argument allows for all true premises and a false conclusion, it is necessarily invalid.
- So, in Predicate Logic we will make substitutions for the predicates and any individual constants to get all true premises and a false conclusion

Exercises

$$
\text { 1. }(x)(A x \supset B x) /(\exists x) B x \cdot(\exists x) A x
$$

All Elbonians are things from Elbonia.
C: Things from Elbonia exist and Elbonians exist.

1. $(x)[(P x \vee H x) \supset D x]$
2. $\mathrm{Pm} \quad /(x)(D x \supset \sim P x)$
3. If something is a human or a whale then it is a mammal.
4. Mike is a human.

C: No mammals are humans.

The Finite Universe Method

- Are these arguments invalid even if Kevin Costner dies?
- Even if all the cars on the planet disappear?
- Two step process:
- Translate into a one-member universe
- Do indirect truth tables to get all true premises and a false conclusion (see 6.5 and your handout on this)
- If that doesn' t work with one member, add another member and repeat until you can.

Exercises

1. $(x)(A x \supset B x) /(\exists x) B x \cdot(\exists x) A x$ (already did this one)
2. Now you try this one:
3. $(x)(A x \supset B x)$
4. $(\exists x)(A x \cdot C x) \quad /(x) B x$

[^0]: More typical kinds of nonarguments

 - Pieces of Advice
 - You should get a haircut.
 - Statements of Belief
 - Rick Larsen will be reelected in the next election.
 - Statements of opinion
 - Today is a beautiful day.

